Estimation in a Cox proportional hazards cure model.
نویسندگان
چکیده
Some failure time data come from a population that consists of some subjects who are susceptible to and others who are nonsusceptible to the event of interest. The data typically have heavy censoring at the end of the follow-up period, and a standard survival analysis would not always be appropriate. In such situations where there is good scientific or empirical evidence of a nonsusceptible population, the mixture or cure model can be used (Farewell, 1982, Biometrics 38, 1041-1046). It assumes a binary distribution to model the incidence probability and a parametric failure time distribution to model the latency. Kuk and Chen (1992, Biometrika 79, 531-541) extended the model by using Cox's proportional hazards regression for the latency. We develop maximum likelihood techniques for the joint estimation of the incidence and latency regression parameters in this model using the nonparametric form of the likelihood and an EM algorithm. A zero-tail constraint is used to reduce the near nonidentifiability of the problem. The inverse of the observed information matrix is used to compute the standard errors. A simulation study shows that the methods are competitive to the parametric methods under ideal conditions and are generally better when censoring from loss to follow-up is heavy. The methods are applied to a data set of tonsil cancer patients treated with radiation therapy.
منابع مشابه
The evaluation of Cox and Weibull proportional hazards models and their applications to identify factors influencing survival time in acute leukem
Introduction: The most important models used in analysis of survival data is proportional hazards models. Applying this model requires establishment of the relevance proportional hazards assumption, otherwise it world lead to incorrect inference. This study aims to evaluate Cox and Weibull models which are used in identification of effective factors on survival time in acute leukemia. Me...
متن کاملBayesian random threshold estimation in a Cox proportional hazards cure model.
In this paper, we develop a Bayesian approach to estimate a Cox proportional hazards model that allows a threshold in the regression coefficient, when some fraction of subjects are not susceptible to the event of interest. A data augmentation scheme with latent binary cure indicators is adopted to simplify the Markov chain Monte Carlo implementation. Given the binary cure indicators, the Cox cu...
متن کاملاستفاده از مدل چندجملهای کسری در تعیین عوامل مرتبط با بقای بیماران مبتلا به سرطان معده
Background & Objectives: Cox regression model is one of the statistical methods in survival analysis. The use of smoothing techniques in Cox model makes the more accurate estimates for the parameters. Fractional polynomial is one of these techniques in Cox model. The aim of this study was to assess the effects of prognostic factors on survival of patients with gastric cancer using the fractiona...
متن کاملPattern-Mixture model of the Cox proportional hazards model with missing binary covariates
When fitting the Cox proportional hazards model with missing covariates, it is inefficient to exclude observations with missing values in the analysis. Furthermore, if the missing-data mechanism is not Missing Completely At Random (MCAR), it may lead to biased parameter estimation. Many approaches have been suggested to handle the Cox proportional hazards model when covariates are sometimes mis...
متن کاملHierarchical Alpha-cut Fuzzy C-means, Fuzzy ARTMAP and Cox Regression Model for Customer Churn Prediction
As customers are the main asset of any organization, customer churn management is becoming a major task for organizations to retain their valuable customers. In the previous studies, the applicability and efficiency of hierarchical data mining techniques for churn prediction by combining two or more techniques have been proved to provide better performances than many single techniques over a nu...
متن کاملUse of Cox's Cure Model to Establish Clinical Determinants of Long-Term Disease-Free Survival in Neoadjuvant-Chemotherapy-Treated Breast Cancer Patients without Pathologic Complete Response
In prognostic studies for breast cancer patients treated with neoadjuvant chemotherapy (NAC), the ordinary Cox proportional-hazards (PH) model has been often used to identify prognostic factors for disease-free survival (DFS). This model assumes that all patients eventually experience relapse or death. However, a subset of NAC-treated breast cancer patients never experience these events during ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biometrics
دوره 56 1 شماره
صفحات -
تاریخ انتشار 2000